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The objective of this thesis is to develop a sequential algorithm to determine accurately and 

quickly, at which point in time a product is well mixed or reaches a steady state plateau, in 

terms of the Refractive Index (RI). An algorithm using sequential non-linear model fitting 

and prediction is proposed.  A simulation study representing typical scenarios in a liquid 

manufacturing process in pharmaceutical industries was performed to evaluate the 

proposed algorithm. The data simulated included autocorrelated normal errors and used the 

Gompertz model. A set of 27 different combinations of the parameters of the Gompertz 

function were considered. The results from the simulation study suggest that the algorithm 
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is insensitive to the functional form and achieves the goal consistently with least number of 

time points. 
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CHAPTER 1  

 

Introduction 

 

 

 

 

In this thesis estimation of a measure called refractive index (RI), used in food and 

beverage industry, chemical, petrochemical and medical/pharmaceutical manufacturing is 

of interest. In this chapter the RI is defined and some of its applications are discussed. 

 

1.1 Refractive Index 

Light travels in different mediums and its speed within any medium depends on the density 

of that medium. When a light enters a medium, the change in the speed of light causes the 

ray to be deflected or bent. This phenomenon is called refraction. A measure of this is 

refractive Index (RI) and it is defined as the ratio of the velocity of a light in air to the 

velocity of light in a substance (USP/NF, 2006). The RI denoted by η  is given by 

/c vη = , 

where c is the speed of light in air (3×10
8
 meters/sec) and v is the velocity of radiation of a 

specific frequency in a specific material .  

The RI could also be defined as the ratio of the sine of the angle of incidence to the sine of 

the angle of refraction (Figure 1.1). This relationship between the angles of incidence and 

refraction and the indices of refraction of the two mediums is known as Snell's Law.  

1 1 2 2sin sinn nθ θ= , 
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where 1θ  is the angle of incidence, 2θ is the angle of refraction 1n  is index of refraction of 

the incident medium and 2n is the  index of refraction of the refractive medium. The Figure 

1.1 shows the phenomenon of refraction as defined by Snells law. 

 

Figure 1.1: Diagram showing Refraction by Snell’s law 

 

Since RI is a ratio, it is a unitless number. For most of the compounds, the value for RI is 

between 1.3000 and 1.7000. (It is generally reported to four or five digit precision.) The RI 

of some common materials is shown in Table 1.1. 

Table 1.1: Refractive Index of common materials 
  

Material Refractive Index (η ) 

Vacuum 1.0000 

Water 1.3300 

Glass 1.4500 - 1.4800 
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The RI is a fundamental property of a substance. Since RI of a substance is constant at a 

given pressure and temperature, it is often used to identify a particular substance and 

dispersion of solids and liquids in it, confirm its purity and measure the concentration of 

solutes in water based solutions .The RI is very sensitive to small amounts of impurities. 

Even a small change in the concentrations of the fluid can be detected by measuring small 

changes in the index of refraction.  

    

      The RI is measured by an instrument called refractometer. It is used to assess the purity 

of a particular substance, or to determine the concentration of one substance dissolved in 

another. To measure the RI of a mixture, an inline process refractometer is incorporated in 

piping of manufacturing plants, liquid mixing devices, and washing apparatuses to measure 

the concentration of various liquids. An inline process refractometer is designed for the 

continuous measurement of concentration of dissolved solids or water soluble liquids 

flowing through a pipe or inside a tank. It has a sensor placed inline with the fluid flow 

along with a control box which provides the temperature compensated reading and relay 

outputs for controlling pumps and valves. Inline process refractometer provides 24-hour 

monitoring of quality without the time involved in periodic manual sampling and therefore 

has extensive applications in the food, beverage, sugar, chemical and metalworking 

industries. The mixing is completed when the mixture achieves a specified RI, so the 

mixing process is closely monitored and the RI is measured very frequently making the 

data volume very large. Figure 1.2 shows an example of inline process refractometer. 
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.  

 

Figure 1.2: Inline Process Refractometer (Unitech USA) 

 

1.2 Applications of RI  

The main objective of measuring RI in various industrial applications is to maintain an 

optimum product consistency during manufacturing. Therefore the industries routinely 

monitor RI throughout the manufacturing process. This benefits industries in many ways 

such as achieving consistency in the end product, maximizing energy efficiency and 

increasing production capacity. Some of the industries where RI plays a significant role are 

listed below. 
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1.2.1 Food and Beverage Industry 

                The RI is widely used in food and beverage industries in the manufacturing of tomato 

products, applesauce, baby food, fruit syrups, various jams and jellies, gelatin, milk 

products, syrups, corn, various beverages (e.g., coffee, malt). Different products have 

different specifications of required RI. For example, the minimum acceptable RI specified 

for tomato sauce is 1.3455 (USDA, 1994). 

 

1.2.2 Chemical and Petrochemical Industry 

The RI is used to characterize and identify different solvents, distillation products, organic 

solution, and organic polymers in chemical industries. It also has application in many 

petrochemical products like oils, fats, waxes, naphthalene, paints and so on (Kenkel, 

2002). For example RI of ethanol (at 020 C) is 1.361 and for glycerol it is 1.4731 ( Hech, 

2003) 

 

1.2.3 Medical and Health industry 

The RI is widely used in medical industry specifically in analyzing blood protein 

concentration, salinity and specific gravity of urine or serum. Any shifts in their RI 

indicate a cause for concern in the sample being tested. 
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1.2.4 Environmental Application 

In environmental applications, it is of interest in measuring the concentration of detergent 

in protein detergent mixtures to study their impact on health. (Strop and Brunger, 2005). 

There are several ways of measuring this concentration one of which is using the RI. 

Apparently unlike some of the other methods, the RI quantification is not limited to 

detergents containing sugar (Urbani and Warne 2005). Further the RI does not require high 

concentrations of detergents (daCosta and Baenziger 2003; Eriks et al.2003).  
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 1.3 Introduction 

The US Food and Drug Administration(FDA) encourages the use of process analytical 

technology (PAT) to increase efficiency, cost-effectiveness, and quality of manufacturing in the 

pharmaceutical industry (FDA, 2002, 2004). The FDA describes PAT, in broad sense, as “a 

system for designing, analyzing, and controlling manufacturing through timely measurements 

(i.e., during processing) of critical quality and performance attributes of raw and in-process 

materials and processes with the goal of ensuring final product quality.”(FDA, 2002, 2004)    

In pharmaceutical industries, the objective of PAT is to understand and control the 

manufacturing processes to have consistency with the current drug quality system. 

While many other industries have used PAT, the pharmaceutical industries have recently begun 

to implement PAT and are attempting to match the other industries in technology, manufacturing 

requirements, and methods of data evaluation. In the PAT framework, one of the tools that 

enable scientific, risk-managed pharmaceutical development, manufacture, and quality assurance 

is process and endpoint monitoring and control tools. 

          Following the general lead of the food and beverage industries, the pharmaceutical 

industry is beginning to implement in-line RI to objectively determine mixing endpoint for the 

liquid products. When liquids are well mixed, the RI appears to "level-off" or reach a "steady-

state plateau". It is of interest to estimate when this phenomenon occurs in the pharmaceutical 

products accurately, quickly and dynamically. In this thesis, using a non linear statistical model 

fit, a sequential algorithm is proposed for determining the moment at which the RI data reach a 

steady state or plateau. In Chapter 2 some of the methods currently used to measure the plateau 

using RI are discussed. In Chapter 3, the algorithm proposed in this thesis is presented. The 
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results from simulation study are also presented in this chapter. In Chapter 4 problems for 

further research are discussed. 
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CHAPTER 2 

 

Background 

 

There are several statistical methods that are widely used to identify the steady state plateau 

using the RI data and determine mixing endpoints in liquids. In this chapter, some of these 

methods are described. When the process has reached a steady state plateau it is also considered 

to be ‘in statistical control.’ Therefore some of the methods that use control charts could also be 

used for finding the steady state plateau for RI data. Two such methods (Shewhart chart and 

Exponentially Weighted Moving Average and Variance) are described in section 2.1 to 2.2. 

 

2.1 Shewhart chart 

A process is said to be in statistical control when the variability in the process is inherent to the 

process, i.e. random or chance caused and not due to assignable causes such as operator, machine 

or a certain batch or a material. A control chart known as Shewhart chart is a tool widely used in 

manufacturing process to determine whether a process is in statistical control. If the chart 

indicates that the process is currently under control, at a specified confidence level, it could then 

be used to predict the future performance of the process. If the chart indicates that the process is 

not in control, it can provide information on the source of variation so that it could be eliminated 

to bring the process back in control. The Shewhart chart is based on run charts, which plot the 

process characteristics in chronological sequence. For the Shewhart chart samples from the 

process are taken at regular intervals and simple performance statistics such as mean, range, 

variance, number of defects, etc., are calculated and graphed over time. The graph is checked to 
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see if the process is within specific control limits. The formula for control limits depends upon 

the distribution of the data being monitored. For Normally distributed data, these control limits 

simply be 3σ±   limits. That is, 

Upper Control Limit (UCL) = 3µ σ+ , 

Lower Control Limit (LCL) = 3µ σ− , 

 where µ  is overall process mean and σ  is process standard deviation. In the control charts, 

lines through µ (central line), and the two limits (UCL and LCL) are shown. The control charts 

may also show upper and lower ‘warning limits’ set typically at 2σ  above and below the 

overall process mean. (Keats, J.B. and Montgomery, D.C, (1991)). 

 

       Once the control limits are defined, rules for deeming a process to be in or out of control 

need to be specified. One such set of rules, used in conjunction with the Shewhart charts, is the 

Western Electric rules (Montgomery, D. (2001). The Figure 2.1 shows an example of a Shewhart 

chart where the points marked ‘X’ denote the out of control data points with the Western Electric 

Rule. If any one of the X’s occurs the process would be deemed out of control. 

 These rules are as follows. 

 

1. At least one point is out of the 3µ σ±  zone. (In Figure 2.1, point sixteen is above 

the UCL.) 
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2. At least two out of three consecutive points are outside of the warning limits 

and are on the same side of the central line. (In Figure 2.1, two consecutive 

points, 3 and 4, are outside the -2σ  limit.) 

3. At least four out of five consecutives points are outside of µ σ± limits and are on 

the same side of the central line (mean). (In Figure 2.1, among the consecutive 

points, 7 to 11, the four points, 7, 8, 10 and 11 are outside the +σ  limit.)  

4. Eight consecutive points are on the same side of the central line. (In Figure 2.1, 

consecutive points, 14 to 21 are above the centerline.)   

5. Eight consecutive points are monotonically increasing or decreasing, whether or 

not they are outside of any limits. (This is not shown in Figure 2.1.) 

 

 

Figure 2.1: Shewharts chart showing out of control signals(X) under Western Electric 

rules, Nancy R. Tague, 2004. 
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For the RI data which has a high sampling frequency and low inherent variability, a plateau is 

reached when the process is in statistical control. That is, none of the above five rules are true for 

a moving window of a specified number of consecutive points (e.g., 20 consecutive points).  

 

2.2 Exponentially Weighted Moving Average and Variance (EWMA and EWMV) 

The Exponentially Weighted Moving Average (EWMA) and Variance (EWMV) control charts 

are proposed for monitoring various types of continuous process variation. They are particularly 

ideal for individual observations across time where no estimates of variability are available from 

replicates and/or the observations are autocorrelated. These charts plot weighted moving average 

values over time. A weighting factor is chosen by the user to determine how previous data points 

affect the mean value compared to more recent ones. For the EWMA control technique, the 

decision depends on the EWMA statistic, which is an exponentially weighted average of all prior 

data, including the most recent measurement. The EWMV charts are useful for augmenting 

control charts where no estimates of variability is available from replicates (J.F Macgregor, T.J 

Harris, 1993).  

 

The EWMA and EWMV chart uses information from all samples and therefore is a better 

alternative to the Shewhart control chart when detecting small shifts. They also handle correlated 

data in some situations. They also allow different targets across batches and are used widely in 

accounting and chemical processes. 
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2.2.1 EWMA calculations 

The EWMA requires specification of design parameters (λ, σ
0
), where λ is the EWMA weight 

such that 0 1λ< ≤  and σ0 is the standard deviation of the historical data when the process was 

under control. At any time i EWMA is defined  

EWMAi  (1 )iyλ λ= + − EWMAi-1                                     (2.1) 

 for i = 1 to n, where iy  is the RI at time i and  n is the number of observations to be monitored 

(Robert,1959).  Initially, at time 1 (i = 1), the value of EWMA0 has to be specified. The 

recommended value for this is the mean of the historical data or the process target. 

 

The parameter λ determines the rate at which previous data enter into the calculations of the 

EWMA statistic.  If λ  = 1 only the most recent measurement influences the EWMA and the 

EWMA converges to Shewhart chart. Usually the choice of weighting factor is arbitrary and 

through λ , EWMA control procedure can be made sensitive to a small or gradual drift in the 

process, whereas the Shewhart control procedure can only react when the last data point is 

outside a control limit. 

For independent observations and large n, the estimated variance of the EWMA statistic is  

2 2( / (2 ))EWMAs sλ λ= −  ,                                              (2.2) 

where s is the estimated standard deviation possibly obtained from the historical data. 

The control limits are calculated by 0EWMA 03 (2 )σ λ λ± − for independent observations 

(Hunter, 1986). 

The EWMA procedure depends on a historical data that are truly representative of the process. 

Once the mean value and standard deviation have been calculated from this dataset, the process 
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can enter the monitoring stage, provided the process was in control when the data were 

collected. Once EWMA estimates are available, the process could be deemed in or out of control 

using the Western Electric rules as described under Shewhart chart. 

 

2.2.2 EWMV calculations 

The EWMV will respond to both the changes in mean and variance. Therefore it is useful to 

compute EWMV about some estimate of process mean.   

The EWMV also requires specification of design parameters (λ, σ
0
), where λ is the EWMA 

weight such that 0 1λ< ≤  and σ0 is the standard deviation of the historical data when the process 

was under control. At any time i, EWMV is defined  

EWMVi   
2

1( ) (1 )i i iy EWMA EWMVλ λ −= − + − ,                              (2.4) 

For i = 1 to n, where iy  is the RI at time i, n is the number of observations to be monitored and 

σ0 is the standard error of the historical data when process was under control (Robert, 1959). As 

in EWMA calculations, initially at time 1 (i = 1), the value of EWMA0   has to be specified. Also 

the initial value for EWMV is 

EWMV0  2

0σ=                                                              (2.5) 

The upper and lower control limits for EWMV charts are given by ( 0 7 0, 0 8 0C Cσ σ σ σ− + ) 

where 7C  and 8C are square roots of the critical values based on the value of λ or by other 

methods such as Johnson Box approximation (Sweet,1986). 
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CHAPTER 3  

 

Method 
 

 In this chapter an algorithm to estimate the mixing endpoints (steady state plateau) using 

a sequential prediction from a non linear fit to the RI data is proposed. In Section 3.1 typical non 

linear functions are described. In Section 3.2 fitting non linear model is briefly summarized. In 

Section 3.3 steps for determining the plateau are presented. In Section 3.4 the application of the 

proposed method on a simulated data is described. 

 

3.1 Non Linear Functions 

Let ( | , )f y x θ represent a non linear function for an outcome y in terms of an independent 

variable x, where vector θ  represents the unknown parameters. In this section some examples of 

non linear functions that have plateau(s) are presented. 

 

3.1.1 Exponential Function 

An exponential function is used in physical sciences to model growth where the growth rate of 

an organism is proportional to the function's current value. This rate of growth could be in either 

the positive or negative direction. A representation of the exponential function is, 

( )exp
1 2

y xθ θ= − − ,                                                   (3.1) 
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where exp  denotes exponential 1θ is the asymptote (as x tends to ∞), and 2θ  is the rate of 

increase in the  log scale with respect to x. A plot of an exponential function for 1θ  = 1.38 and 

2θ = 1 (chosen to represent the RI data used in this thesis) is shown in Figure 3.1.  
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Figure 3.1: Exponential Function: 1θ  = 1.38 and 2θ = 1 (blue) or 2 (Red) 

 

Exponential models arise whenever quantities grow or shrink by a constant factor, such as in 

radioactive decay or population growth. Some of the examples of exponential growth are 

microorganisms in a culture dish that grow exponentially until the nutritients are exhausted. 

Another application is in the growth of virus that initially spread quickly in the absence of any 

artificial immunization and plateau once the virus is contained.  
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3.1.2 Gompertz Function 

Gompertz curve is a generalized form of the exponential model and is used generally where 

growth is slowest at the start and end of the growing period leading to an S shaped curve. A 

representation of the Gompertz function is, 

( )exp exp( )
1 2 3

y xθ θ θ= −   ,                                         (3.2) 

where exp is the exponential , 1θ  is the asymptote, 2θ represents the early growth , 3θ  represents 

the linear phase of the growth (growth spurt). 

An alternative representation of the Gompertz function, which is commonly used, is obtained by 

taking the natural logarithm of (3.2). That is, 

 ' (1 exp( ))y xα β γ= − − − ,     (3.3) 

where 'y is the log of y , α = ln ( 1θ ), β = -ln( 2 1/ ln( )θ θ ) and γ = 3θ− . Example plots of 

Gompertz curves showing the effect of varying 2θ  and 3θ  are presented in Figure 3.2. 
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Figure 3.2: Gompertz curve: 1θ =1.38, 2θ = 1.3, 3θ = -1 (Blue), or 2θ = 1.3, 3θ = -2 (Green) or 

2θ = 6.3, 3θ = -1 (Red) 
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The main applications of the Gompertz function are in population studies and animal growth, 

especially when the growth is not necessarily symmetrical about the point of inflection. 

  

3.1.3 Logistic Function 

The functional form of the logistic function (Katsunori Fujii, 2006) is, 

1( | )
1 exp( )

2 3

y f x
x

θ

θ θ
= =

+ −
θ .                                                  (3.3) 

The logistic function also describes a Sigmoid shaped process. It is primarily used to model 

biological population growth in species which have grown large and are nearing their saturation. 

It has applications in other fields such as neural networks where it is used to introduce non-

linearity in the process. The decline of demand for a product as a function of increasing price can 

be modeled in marketing by a logistic function. In statistics, the logistic function is applied with 

categorical data and also in regression to model the probability of an event as a function of 

explanatory variables. Example plots of this function are shown in figure 3.3.  

Here again, 1θ  represents the asymptote, 2θ  is the early growth and 3θ  is the growth (growth 

spurt). 
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Figure 3.3: Logistic function: 1θ = 1.38, 2θ =  1.97, 3θ  = 1 (Blue), or 2θ =  0.97, 3θ  = 1 (Green) 

or  2θ =  0.97, 3θ  = 1 (Red) 

 

 

3.1.4 Double Logistic Function 

The double logistic function is similar to the logistic function. It is graphically similar to two 

identical logistic functions bonded together at the point x = g. The functional form of the double 

logistic function is 

1 1( )
( ) ( )

2 3 4 51 1

g
y x

x x
e e

θ θ

θ θ θ θ

−
= +

− − − −
+ +

,                                (3.4) 

where g  is known, 1θ  2θ , 3θ , 4θ  and 5θ are the parameters( Katsunori Fujii,2006 ). This 

function is similar to the logistic function and is useful in describing biological growth in which 

there are two phases. For instance, the human growth which has a childhood phase (e.g., 0 to 2 
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years of age) and an adult phase (e.g, 2 to 18 years of age). An example of the double logistic 

function is shown in Figure 3.4. 

 

 

 

 

 

                        

 

 

Figure 3.4: Double logistic function 

 

 3. 2. The method for identifying the plateau  

The process of identifying the plateau begins by determining an appropriate non-linear functional 

form. Then the next step is to estimate the plateau of the specified non-linear function. These two 

steps are described below.  

 

3.2.1 Determining an appropriate functional form for the data. 

In this step a functional form to describe the process is identified. To begin, first obtain sample 

data that represents the process. Then by plotting the data and comparing with known functions 

as those described above, identify an appropriate function. Identifying an appropriate non-linear 

function requires the use of empirical evidence, knowledge of the process, and trial and error 
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experimentation. Sometimes there is historical knowledge about functions that appropriately 

fit a given process well. In the absence of a historical model or experience with prior data sets, 

selecting an appropriate function will often require a certain amount of trial and error. 

 

3.2.2 The estimation of the non-linear model. 

Since iterative methods are applied to fit a non-linear model, appropriate initial values for the 

estimation of the model parameters need to be determined. Some models are extremely sensitive 

to the choice of initial values whereas others are less sensitive. There are a number of ways to 

determine these initial values. Information from previous fits of similar data might be an option. 

Sometimes appropriate guesses from the functional form could also determine initial values. 

Finally, most statistical procedures such as the NLIN procedure in SAS are quite robust to the 

initial values and therefore their specification is generally not an issue. 

            In this thesis, NLIN procedure in SAS was used to estimate the model parameters. 

As stated earlier, estimation of a non-linear model is an iterative process and so to begin this 

process the NLIN procedure first examines the starting value specifications of the parameters. 

The procedure uses derivatives or approximations to derivatives of the Sum of Squares Error 

(SSE) with respect to the parameters to guide the search for the parameters that minimize SSE.  

If a grid of values is specified, NLIN procedure evaluates the residual sum of squares at each 

combination of the parameter values to determine the set of parameter values producing the 

lowest residual sum of squares. These parameter values are used only for the initial step of the 

iteration. (See SAS help and documentation for further details). 

Another characteristic of the RI data is that the observations over time are likely to be serially 

correlated.  That is, observations closer together have higher correlations than those farther apart. 
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A process that best describes such correlations is the auto-regressive process (e.g the first-

order autoregressive process (AR (1))). Estimating this auto-correlation via non-linear modeling 

is tedious and common software does not incorporate this option. Therefore, the algorithm 

proposed in this thesis does not include the simultaneous estimation of the AR(1) parameter. 

This will be considered in subsequent research. (See chapter 4 under future research.) (However, 

in the simulation study presented later in this chapter the data were generated under the 

assumption of AR(1) errors to examine if the proposed method is insensitive to this assumption.) 

 

3.3 Steps for identifying when the plateau is reached.  

Once an appropriate non-linear function has been identified and the estimation of the parameters 

of that function has been established, identification of when the plateau is reached over time is 

achieved through another iterative or sequential process. The steps in this process are described 

below.  

1. Initialize: Define the number of initial points, k0, for the beginning of the algorithm for 

the process of interest. Based on prior information, choosing k0 close to the plateau will 

speed up the convergence of the algorithm. Let the data from these k0 points be denoted 

by
01 2, ,..., ky y y . Select an appropriate non-linear function for the process. Specify the 

tolerance, τ. 

2. Fit model: In the i
th

 iteration fit the non-linear model to the ki data points. 

3. Predict future observations: In the i
th

 iteration, use the model fitted in step 2 and predict 

the next l observations, ˆ
ik jy +  j= 1, 2… to l. (The number of points predicted (l) is 
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arbitrary and could be specific to the process. Compute the average of the squared 

differences between ˆ
ik jy + and the last observation in the data

iky . That is, 

2ˆ( )

1
ˆ

i

l
y y
k j k
i ij

l
µ

−∑
+

=
=  

4. Check for convergence: If the average of the squared difference computed in Step 3, ˆ
iµ  is 

larger than a predefined toleranceτ , increase ki to ki+1 = ki+ l and go back to step 2. If 

ˆ
iµ τ< , the model has reached the plateau. When the iterations stop the time when the 

plateau is reached is obtained. 

The rationale for Step 4 is that if the process has reached the asymptote, the predicted future 

observations should not vary much from the last recorded observation. Therefore, the difference 

between the last observation and the predicted observations would be close to zero. For instance, 

if the process is at the increasing phase of the process, the predicted observations would be 

significantly larger than the last observation and therefore the proposed algorithm will continue. 

In general, predicting beyond the range of values of the observed data (i.e., extrapolating) leads 

to a large variability. Therefore, the convergence of the algorithm is more likely to lead to the 

true time at which the plateau is reached.  

      In Figure 3.5 a) - e), a simulated example of the progression of the algorithm through some 

of the iterations in a typical case is shown. The blue points show the actual data and the red lines 

show the fitted line with predicted values for five additional points. In Figure 3.5a) the initial 

step with 30 points is shown. Notice that the process is in the linear phase.  The Figures 3.5 b), 

c), d) and e) show the eighth, 16
th

, 24
th

 and 29
th

 iterations respectively. In this case the algorithm 
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converged at the 29
th

 iteration. The Figure 3.5 f) shows the complete data for comparison.  

(Larger versions of these figures could be found in the Figure C.1a)-f), Appendix C.) 

 

In figure 3.5 the algorithm is presented in the form of a flow chart. 
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Figure 3.5: Progression of the Algorithm  
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Figure 3.6 Flowchart describing the Algorithm for identifying the plateau 

 

 

 

Check Tolerance: 

Is the mean of the squared 

differences < Tolerance(τ ) 

No 

Fit: Fit the non linear model to the ki data 

points 

Predict: Using the fit, predict the next l 

observations. Compute the mean of the 

squared difference between the predicted and 

the observation ki.  

Yes 

Initialize: Define the number of initial 

points, k0. Choose the appropriate non linear 

function. Specify a tolerance. 

Record the time 

And the value 

of the plateau 

 

Set ki+1 = ki + l 
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 3.4 Application of the proposed algorithm 

Although numerous industries generate numerous data in which the application of the proposed 

algorithm would be appropriate, due to unavailability of company’s specific confidential data, it 

was not possible to demonstrate the method using actual raw data. However, estimates of 

parameters from actual processes were obtained and data were simulated from these estimates so 

that the properties of the algorithm could be studied, while preserving the confidentiality of the 

actual data. In what follows, the simulation study and the results are presented. 

 

3.4.1 Simulation Process: Obtaining the estimates of the model parameters for simulation. 

In pharmaceutical applications the RI-time curve exhibit multiple degrees of slopes leading to 

varying areas of plateaus representing many processes. Data collected from multiple scenarios 

discussed earlier were obtained from liquid manufacturing process that involves addition of raw 

material at varying times. Before fitting the model in each scenario, first the region for which the 

steady state plateau is to be identified was extracted from the complete mixing profile of that 

process. In these processes plateaus may be reached in an increasing direction, a decreasing 

direction or both. The process is increasing at the beginning phases and continues to increase 

after reaching several plateaus. When the process starts decreasing, in most of the products it 

indicates the final mixing stage. In this thesis only the plateaus for increasing profiles were used 

for the simulations. 

            For the simulation study, representative data sets were obtained from a local 

pharmaceutical company. They were first plotted two-dimensionally, with the X axis 

representing the time and the Y axis representing the RI. Based on experience and examining the 
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shape of the graph as well as the residual plots, the Gompertz function seemed appropriate to 

fit the process. In addition, since the Gompertz function is versatile in fitting variety of shapes it 

was chosen in the simulation study for testing the algorithm.  The form of the function fitted was 

(1 exp( ))y t= α − −β − γ                                            (3.5) 

Here, α is the asymptote, β and γ are the growth rate, t is time and exp is the exponential. (See 

Section 3.1.2 for more details). The above non-linear model was fitted to all the representative 

data sets provided to us and corresponding estimates of the three model parameters were 

obtained using NLIN procedure in SAS. 

             The initial parameters that are required for fitting were supplied in the model by trial and 

error until the convergence criterion for the maximum likelihood estimation was met. The 

parameters α, β, γ and the Mean Square Error (MSE) were estimated. The residual plots for each 

model fit were examined. While the normality seemed to be appropriate for all the processes, 

there was an indication of lack of independence. The observations over time seemed to be 

autocorrelated. Therefore, to represent the actual data in the simulations it was decided that an 

autoregressive (AR(1)) error would be generated. To decide upon what would be the magnitude 

of the autocorrelation the AR (1) estimates were obtained from the residuals of these models 

using the formula, 
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One may also estimate ρ  using the option DW in the model statement in PROC REG using 

SAS. (MODEL e=/dw;),where DW is the Durban-Watson statistic to test if the serial correlation 

is zero.  

               Once these estimates were obtained from all the representative data sets provided, the 

minimum, median and maximum of the three model parameters were recorded. For the 

simulation study these three levels of the parameter estimates were used to form 27 

combinations. The MSE and the ρ̂  were set at the median value. These combinations are 

presented in tables A1 and A2, of Appendix A. (Although this entailed major part of the thesis 

work, the details of the model fit and the graphs of the original data presented to us are not 

provided to preserve confidentiality.) 

 

3.4.2 Generation of simulated data 

The following steps were used to simulate the data using SAS. 

Step 1. Autocorrelated normal distributed residuals.  

First random numbers having a normal distribution with mean 0 and variance 1 were   

generated using the following statement in SAS, 

z = rannor(seed). 

            Next z was scaled by the MSE using the statement  

u = sqrt(mse)·z 

Using the estimate of autocorrelation ( ρ̂ ) the autocorrelated normal errors were generated 

using the following statement  

ei = ρ̂ ·ei-1 + ui,  

           where the initial value of e0 is set as  0. 



www.manaraa.com

 30 

 

Step 2. Gompertz data 

For each combination of the parameter values, observations following a Gompetz model 

were generated using the formula, 

(1 exp( ))y xα β γ= − − −  

where the time t = 1, 2, …, 200. 

Step 3. The RI data 

 The RI data were generated by adding the autocorrelated errors from Step 1 to  the 

Gompertz data, y, obtained in Step 2 as 

RI = y + e. 

  The process was repeated 100 times. Thus, there were 27 combinations of data each of   

which had 100 samples following a Gompertz model over 200 time points. 

 

3.5. Application of the algorithm to the simulated data 

The proposed method to estimate the plateau as described in section 3.3 was applied to the 

simulated data and the asymptotes (α) were estimated for each combination of the parameters.  

Step 1: For the initial step k0 = 30 points were selected. The Gompertz function was chosen. The 

tolerance was set to be 0.000000009, based on the variance observed in the representative 

processes. 

Step 2: The Gompertz model was fitted using the NLIN procedure in SAS.  
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Step 3:  Using the OUTPUT statement the predicted values for the next five observations (l = 

5) were obtained. In the i
th

 iteration, the squared differences between the predicted values ˆ
ik jy + , 

(j=1, 2…..l) and 
iky  were computed. 

Step 4: The mean of the differences computed in step 3 was obtained using the PROC MEANS 

procedure. This mean was compared to the tolerance of 0.000000009.  

Step 5: When the process converged, for each simulation, the plateau, the number of iterations, 

the parameter estimates and their standard errors were recorded. 

Step 6: Recall, α  represents the true plateau. Therefore, for each combination of the parameters, 

the Bias and MSE were calculated as 

Bias =
1

ˆ( )

1

N

sN s

α α−∑
=

,                                                   (3.7) 

and  

MSE = 
21

ˆ( )

1

N

sN s

α α−∑
=

,                                                     (3.8) 

where sα  represents the estimated plateau from the s
th

 simulation and N represents the number of 

simulations (100 in this case)  

 

3.6 Simulation Results 

The purpose of the simulation study performed here is mainly to examine the characteristics of 

the sequential algorithm for different types of processes. Specifically, in terms of bias and MSE, 

the purpose was to examine how the size of alpha, beta and gamma affect the algorithm. The 

simulation results from the 27 combinations of model parameters, sorted from lowest to highest 
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bias of the estimated plateaus are presented in Table B1, Appendix B. The same results are 

presented again in Table B2 Appendix B but sorted from lowest to highest MSE of the estimated 

plateau. Table B3 presents the results sorted for highest number of mean iterations the algorithm 

takes to converge. In these tables, column Alpha represents the asymptote, columns Beta and 

Gamma are the growth rates for the curves. The other columns of the table are the mean and 

variance of plateaus across 100 simulations for each combination of model parameters. The 

tables also show the mean and variance of number of iterations required for the statistical model 

to meet the condition of the tolerance.       

           For the discussion, the three values of each of the model parameters which are minimum, 

median and maximum will be referred to as Low, Medium and High respectively (See Table A1, 

Appendix A). 

 

3.7 Conclusions 

The figure 3.9 presents the plots of plateau MSE and bias for all the 27 combinations. 

From the results several characteristics emerge. 

• In general the bias and the MSE for all the combinations seem to be low. (See Tables B1-

B3, Appendix B and figure 3.9). Recall, the low, medium and high values for the various 

parameters were determined from the actual data. Therefore, the algorithm seems to 

identify the plateau accurately for most practical situations. 

• The main difference in the results seems to arise for the low beta and low gamma 

combinations. Irrespective of the level for Alpha when Beta and Gamma are small the 

bias and the MSE is the largest for these combinations. In figure 3.9 the points 

represented by the combinations, 111, 211 and 311 (low Beta and low Gamma) have the 
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highest bias and MSE. The best performance of the proposed algorithm (i.e. the least 

MSE and bias) is in the models with the combinations of medium or high Beta with 

medium Gamma. (Table B1 and B2, Appendix B). 

• When Gamma is low the number of iterations required by the model to meet the tolerance 

level is much higher and could go up to 20. (See Table B3, Appendix B). The number of 

iterations essentially represents the number of time points needed to identify a plateau. In 

the algorithm used, 20 iterations would imply 130 time points (30 + 20 x 5).  The 

algorithm seems to converge with a mean of 30 to 35 time points when Beta and Gamma 

are high or medium. These are the cases that represent a steep increase in the early stages 

of the process. There were combinations (group 1 and 10) with a low Gamma that took 

150 time points to identify the plateau. These are the cases where the processes gradually 

increase to the plateau.   
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                 Figure 3.7: Plot of bias and MSE of the estimated plateaus for the 27 combinations 
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Chapter 4 

Summary and Future Work 

 

4.1 Summary 

The purpose of this thesis was to use a non-linear statistical model to determine the mixing end 

point at which the simulated RI data reach a steady state or plateau in multistage liquids 

manufacture processing as quickly, accurately and reliably as possible.  In this thesis, an 

algorithm that sequentially fits non-linear models and predicts the future observations was used 

to automatically estimate the steady state plateau. The proposed algorithm is significantly 

different from the other existing methods primarily because they do not fully utilize the 

mechanistic (functional) form of the process. 

                      To evaluate the usefulness of the algorithm a simulation study was performed and 

the results were presented.  The algorithm proves to be successful in accurately estimating the 

plateaus for most of the situations presented by the simulation study. The method is insensitive to 

changes in the asymptote but irrespective of level of Alpha; low Beta and low Gamma produces 

relatively large bias and MSE. 

  

4.2 Future Work 

The proposed method of non linear statistical algorithm is significantly different from the other 

existing methods. During the development of the proposed method, a variety of other research 

opportunities arose. Some of these are summarized here. 
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                        Two of the main limitations of the simulation study presented are the 

following. The proposed algorithm was not compared to the existing methods. Second the 

sensitivity of the algorithm to misspecifications of the non-linear function was not evaluated. The 

SAS software provides macros for implementing the EWMA and EWMV methods with the 

Western Electric Rules. In future, it would be useful to apply these methods to the data simulated 

and estimate the time at which these methods identify the plateau and compare them with the 

proposed algorithm. Similarly, one could consider other non-linear models such as exponential, 

logistic, and so on to estimate the time at which the plateau is identified for the data generated 

using the Gompertz model. Then evaluate the sensitivity of the algorithm to this misspecification 

of the non-linear function.  

.                         Another limitation of the simulation study is, although the data were generated 

using autocorrelated errors, the fit of the non-linear model did not incorporate this serial 

correlation. This limitation exists primarily because the software used (SAS NLIN) does not 

include straightforward option for using the autocorrelation. Although the simulation study 

results seem to indicate robustness against this lack of independence, it would be useful to study 

whether the procedure converges faster (i.e. the plateau is identified earlier) by incorporating the 

autocorrelation.    

Finally, the results presented here were all for monotonically increasing functions. The case of 

monotonically decreasing function also arises often in the pharmaceutical applications (Figure 

4.1). Although the general methodology that works for the increasing function would easily 

adapt to the decreasing case there are certain peculiarities about the decreasing cases that might 

require further considerations. For instance, it is known that, during the last stage of mixing 

liquids, where it is highly variable across products, the algorithm might have to be customized. 
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Moreover, some of the processes have both increasing and decreasing stages and several of 

each. For instance, a process may have several stages, each of which may be increasing or 

decreasing and at each stage the process may reach a plateau. Extensions of the proposed method 

to incorporate these differences and perhaps simultaneously identify all the plateaus might be of 

interest.  

 

 

Figure 4.1: Simulated monotonically descending function  

 

 

In summary, in this thesis a sequential algorithm based on consecutive fits of non-linear models was 

proposed for estimating the time at which a steady state in pharmaceutical processes is reached. The 

algorithm proposed has the potential to incorporate all aspects of the process, namely, the mechanistic 

model, the variability in the process and the serial correlations. One of the main advantages of this 

algorithm is, by identifying the plateau quickly, it could save a considerable amount of time in applications. 
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Often the purpose of identifying the plateau is to start a new process (perhaps by adding new materials to 

the substances being observed). The following Figure 4.2 shows how one could save time if the plateau is 

identified early. By implementing our algorithm in real time the savings could be materialized.    

 

                           

 

Figure 4.2: An example of process showing gain in time if plateau is identified early 
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Appendix A 

Table A1: Levels for Model Parameter 

Model Parameter Low(min) Medium(median) High(Max) 

Alpha 1.3890 1.3906 1.3990 

Beta 5.9787 6.9432 9.0448 

Gamma .0160 .1199 .5426 

 

Table A2: Combination Code for Model Parameters 

Group Alpha Beta Gamma Combination 

1 Low Low Low 111 

2 Low Low High 113 

3 Low Low Medium 112 

4 Low High Low 131 

5 Low High High 133 

6 Low High Medium 132 

7 Low Medium Low 121 

8 Low Medium High 123 

9 Low Medium Medium 122 

10 High Low Low 311 

11 High Low High 313 

12 High Low Medium 312 

13 High High Low 331 

14 High High High 333 

15 High High Medium 332 

16 High Medium Low 321 

17 High Medium High 323 

18 High Medium Medium 222 

19 Medium Low Low 211 

20 Medium Low High 213 

21 Medium Low Medium 212 

22 Medium High Low 231 

23 Medium High High 233 

24 Medium High Medium 232 

25 Medium Medium Low 221 

26 Medium Medium High 223 

27 Medium Medium Medium 222 
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Appendix B 

Table B1: Simulation results sorted by lowest MSE 

Obs Alpha Beta Gamma 

Plateau

mean 

Plateau 

variance Plateau Bias
2
 Plateau MSE 

mean # 

iteration 

Variance # 

iteration comb 

1 1.3990 5.9787 0.5426 1.39901 0 1.1671E-10 1.1671E-10 1.00 0.0000 313 

2 1.3890 9.0448 0.1199 1.38900 2.3963E-10 4.0203E-12 2.4365E-10 1.00 0.0000 132 

3 1.3890 6.9432 0.5426 1.38900 2.6862E-10 5.0072E-15 2.6862E-10 1.00 0.0000 123 

4 1.3906 9.0448 0.5426 1.39060 2.8946E-10 2.282E-14 2.8948E-10 1.00 0.0000 131 

5 1.3890 9.0448 0.5426 1.38900 2.9236E-10 2.9581E-12 2.9532E-10 1.00 0.0000 133 

6 1.3990 9.0448 0.5426 1.39900 2.9436E-10 2.6232E-12 2.9698E-10 1.00 0.0000 333 

7 1.3990 6.9432 0.5426 1.39900 2.8883E-10 8.3252E-12 2.9716E-10 1.00 0.0000 323 

8 1.3990 9.0448 0.1199 1.39900 2.8791E-10 1.4029E-11 3.0194E-10 1.00 0.0000 332 

9 1.3906 9.0448 0.1199 1.39060 3.1106E-10 4.3813E-14 3.1111E-10 1.00 0.0000 232 

10 1.3890 5.9787 0.5426 1.38900 3.1833E-10 7.9862E-13 3.1913E-10 1.00 0.0000 113 

11 1.3906 5.9787 0.5426 1.39060 3.3355E-10 7.3605E-15 3.3356E-10 1.00 0.0000 213 

12 1.3906 6.9432 0.5426 1.39060 3.5275E-10 1.6743E-12 3.5443E-10 1.00 0.0000 223 

13 1.3990 6.9432 0.1199 1.39898 2.2735E-10 5.2742E-10 7.5477E-10 1.01 0.0100 222 

14 1.3890 6.9432 0.1199 1.38898 3.0784E-10 5.9558E-10 9.0342E-10 1.01 0.0100 122 

15 1.3906 6.9432 0.1199 1.39057 2.7848E-10 7.0819E-10 9.8667E-10 1.00 0.0000 222 

16 1.3906 5.9787 0.1199 1.39054 3.2435E-10 3.97376E-9 4.29811E-9 1.19 0.2161 212 

17 1.3890 5.9787 0.1199 1.38894 3.8949E-10 3.91803E-9 4.30751E-9 1.16 0.1560 112 

18 1.3990 5.9787 0.1199 1.39894 4.855E-10 3.85203E-9 4.33754E-9 1.25 0.2904 312 

19 1.3906 9.0448 0.0160 1.39052 7.4867E-10 6.20088E-9 6.94955E-9 3.83 12.0617 231 

20 1.3890 9.0448 0.0160 1.38892 5.0806E-10 6.75481E-9 7.26287E-9 3.24 8.8105 131 

21 1.3990 9.0448 0.0160 1.39892 5.0257E-10 7.03024E-9 7.53281E-9 3.27 8.5425 331 

22 1.3890 6.9432 0.0160 1.38883 3.8436E-10 2.93761E-8 2.97604E-8 19.83 0.2839 121 

23 1.3906 6.9432 0.0160 1.39042 2.5923E-10 3.1348E-8 3.16072E-8 19.89 0.1999 221 

24 1.3990 6.9432 0.0160 1.39882 3.2737E-10 3.16492E-8 3.19765E-8 19.85 0.2096 321 

25 1.3990 5.9787 0.0160 1.39878 0 5.05724E-8 5.05724E-8 28.00 0.0000 311 

26 1.3906 5.9787 0.0160 1.39038 7.5772E-10 5.05977E-8 5.13554E-8 17.78 1.8905 211 

27 1.3890 5.9787 0.0160 1.38877 7.6302E-10 5.36799E-8 5.44429E-8 28.44 1.4812 111 
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Table B2: Simulation results sorted by lowest Bias 

Obs Alpha Beta Gamma 

Plateau

mean 

Plateau 

Variance 

Plateau 

Bias
2
 Plateau MSE 

Mean # 

iteration 

Mean # 

Variance Group 

1 1.3890 6.9432 0.5426 1.38900 2.6862E-10 5.0072E-15 2.6862E-10 1.00 0.0000 123 

2 1.3906 5.9787 0.5426 1.39060 3.3355E-10 7.3605E-15 3.3356E-10 1.00 0.0000 213 

3 1.3906 9.0448 0.5426 1.39060 2.8946E-10 2.282E-14 2.8948E-10 1.00 0.0000 233 

4 1.3906 9.0448 0.1199 1.39060 3.1106E-10 4.3813E-14 3.1111E-10 1.00 0.0000 232 

5 1.3890 5.9787 0.5426 1.38900 3.1833E-10 7.9862E-13 3.1913E-10 1.00 0.0000 113 

6 1.3906 6.9432 0.5426 1.39060 3.5275E-10 1.6743E-12 3.5443E-10 1.00 0.0000 223 

7 1.3990 9.0448 0.5426 1.39900 2.9436E-10 2.6232E-12 2.9698E-10 1.00 0.0000 333 

8 1.3890 9.0448 0.5426 1.38900 2.9236E-10 2.9581E-12 2.9532E-10 1.00 0.0000 133 

9 1.3890 9.0448 0.1199 1.38900 2.3963E-10 4.0203E-12 2.4365E-10 1.00 0.0000 132 

10 1.3990 6.9432 0.5426 1.39900 2.8883E-10 8.3252E-12 2.9716E-10 1.00 0.0000 323 

11 1.3990 9.0448 0.1199 1.39900 2.8791E-10 1.4029E-11 3.0194E-10 1.00 0.0000 332 

12 1.3990 5.9787 0.5426 1.39901 0 1.1671E-10 1.1671E-10 1.00 0.0000 313 

13 1.3990 6.9432 0.1199 1.39898 2.2735E-10 5.2742E-10 7.5477E-10 1.01 0.0100 222 

14 1.3890 6.9432 0.1199 1.38898 3.0784E-10 5.9558E-10 9.0342E-10 1.01 0.0100 122 

15 1.3906 6.9432 0.1199 1.39057 2.7848E-10 7.0819E-10 9.8667E-10 1.00 0.0000 222 

16 1.3990 5.9787 0.1199 1.39894 4.855E-10 3.85203E-9 4.33754E-9 1.25 0.2904 312 

17 1.3890 5.9787 0.1199 1.38894 3.8949E-10 3.91803E-9 4.30751E-9 1.16 0.1560 112 

18 1.3906 5.9787 0.1199 1.39054 3.2435E-10 3.97376E-9 4.29811E-9 1.19 0.2161 312 

19 1.3906 9.0448 0.0160 1.39052 7.4867E-10 6.20088E-9 6.94955E-9 3.83 12.0617 231 

20 1.3890 9.0448 0.0160 1.38892 5.0806E-10 6.75481E-9 7.26287E-9 3.24 8.8105 131 

21 1.3990 9.0448 0.0160 1.39892 5.0257E-10 7.03024E-9 7.53281E-9 3.27 8.5425 331 

22 1.3890 6.9432 0.0160 1.38883 3.8436E-10 2.93761E-8 2.97604E-8 19.83 0.2839 121 

23 1.3906 6.9432 0.0160 1.39042 2.5923E-10 3.1348E-8 3.16072E-8 19.89 0.1999 221 

24 1.3990 6.9432 0.0160 1.39882 3.2737E-10 3.16492E-8 3.19765E-8 19.85 0.2096 321 

25 1.3990 5.9787 0.0160 1.39878 0 5.05724E-8 5.05724E-8 28.00 0.0000 311 

26 1.3906 5.9787 0.0160 1.39038 7.5772E-10 5.05977E-8 5.13554E-8 17.78 1.8905 211 

27 1.3890 5.9787 0.0160 1.38877 7.6302E-10 5.36799E-8 5.44429E-8 28.44 1.4812 111 
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                     Table B3: Simulation results sorted by Highest Mean of number of Iterations 

Obs Alpha Beta Gamma 

Plateau 

Mean 

Plateau 

Variance 

Plateau 

Bias 

Plateau 

Mean 

Mean  # 

Iteration 

Variance # 

Iteration Group 

1 1.389 5.9787 0.016 1.3887683108 7.630245E-10 5.3679888E-8 5.4442913E-8 28.44 1.4812121212 111 

2 1.399 5.9787 0.016 1.3987751169 0 5.0572415E-8 5.0572415E-8 28 0 311 

3 1.3906 6.9432 0.016 1.3904229465 2.592334E-10 3.1347951E-8 3.1607184E-8 19.89 0.1998989899 221 

4 1.399 6.9432 0.016 1.3988220979 3.273729E-10 3.164916E-8 3.1976533E-8 19.85 0.2095959596 321 

5 1.389 6.9432 0.016 1.3888286055 3.843646E-10 2.9376085E-8 2.976045E-8 19.83 0.2839393939 121 

6 1.3906 5.9787 0.016 1.3903750607 7.577229E-10 5.0597683E-8 5.1355406E-8 17.78 1.8905050505 211 

7 1.3906 9.0448 0.016 1.3905212543 7.486706E-10 6.2008787E-9 6.9495493E-9 3.83 12.061717172 231 

8 1.399 9.0448 0.016 1.3989161535 5.025698E-10 7.0302402E-9 7.53281E-9 3.27 8.5425252525 331 

9 1.389 9.0448 0.016 1.3889178123 5.080596E-10 6.754812E-9 7.2628716E-9 3.24 8.8105050505 131 

10 1.399 5.9787 0.1199 1.3989379353 4.855048E-10 3.8520315E-9 4.3375363E-9 1.25 0.2904040404 312 

11 1.3906 5.9787 0.1199 1.3905369623 3.243535E-10 3.9737551E-9 4.2981087E-9 1.19 0.2160606061 212 

12 1.389 5.9787 0.1199 1.3889374058 3.894858E-10 3.9180277E-9 4.3075136E-9 1.16 0.155959596 112 

13 1.389 6.9432 0.1199 1.3889755956 3.078403E-10 5.955755E-10 9.034158E-10 1.01 0.01 122 

14 1.399 6.9432 0.1199 1.3989770345 2.273517E-10 5.274151E-10 7.547668E-10 1.01 0.01 222 

15 1.389 5.9787 0.5426 1.3889991063 3.183279E-10 7.986212E-13 3.191265E-10 1 0 113 

16 1.389 9.0448 0.5426 1.3889982801 2.923635E-10 2.95806E-12 2.953216E-10 1 0 133 

17 1.389 9.0448 0.1199 1.3889979949 2.396321E-10 4.020342E-12 2.436524E-10 1 0 323 

18 1.389 6.9432 0.5426 1.3890000708 2.686166E-10 5.007195E-15 2.686216E-10 1 0 123 

19 1.399 5.9787 0.5426 1.3990108032 0 1.167085E-10 1.167085E-10 1 0 313 

20 1.399 9.0448 0.5426 1.3990016196 2.943568E-10 2.623199E-12 2.9698E-10 1 0 333 

21 1.399 9.0448 0.1199 1.3989962544 2.87913E-10 1.402949E-11 3.019425E-10 1 0 332 

22 1.399 6.9432 0.5426 1.3989971147 2.888309E-10 8.325155E-12 2.97156E-10 1 0 323 

23 1.3906 5.9787 0.5426 1.3905999142 3.335486E-10 7.360471E-15 3.33556E-10 1 0 213 

24 1.3906 9.0448 0.5426 1.3906001511 2.894571E-10 2.281967E-14 2.894799E-10 1 0 233 

25 1.3906 9.0448 0.1199 1.3905997907 3.110639E-10 4.381342E-14 3.111077E-10 1 0 232 

26 1.3906 6.9432 0.5426 1.390601294 3.527536E-10 1.674348E-12 3.544279E-10 1 0 223 

27 1.3906 6.9432 0.1199 1.3905733881 2.784779E-10 7.081924E-10 9.866703E-10 1 0 222 
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Appendix C 

The plots of estimated plateau for all 27 combinations of model parameters 
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Figure C.1.a)-b): Progression of the Iterations 
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c) Iteration 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 d) Iteration 24 

 

Figure C.1c)-d): Progression of the Iterations 
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      e) Iteration 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f) Final iteration 

Figure C.1e)-f) Progression of the Iterations 
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Appendix D 

D1: SAS codes for generating simulated data 

    
           
%let _prognam=Y15_20060182; ** SAS program name; 
%let _output1=&_prognam; 
%let _byvars = product product_code batch plateau ; 
%let _footnote= "&_prognam-Statistical Project &_projnum-&_reqnum  "; 
  
/*Plateau 1-positive function*/ 
 
%let _alphavali=%str(1.3890,1.3990,1.3906);*(min,max,median for Alpha); 
%let _betavali=%str(5.9787,9.0448,6.9432); *(min,max,median for Beta); 
%let _gammavali=%str(.0160,.5426,.1199); *(min,max,median for Gamma); 
%let _arvali=%str(.5160); *(median for Ar(1);  
%let _msevali=%str(.000000000485); *(median for MSE); 
 
 options merror mprint mlogic symbolgen ; 
libname library "C:\20060182"; 
 
data simulation_inc; 
group=0; 
dir=1; 
do  alpha=&_alphavali; 
    do beta=&_betavali;  
       do gamma=&_gammavali; 
         do ar=&_arvali; 
           do mse=&_msevali; 
      group=group+1; 
               do i=1 to 100;*# of profiles generated using each comb;  
    e=0; 
                  do x=1 to 200; *number of points on each plateau; 
              z = rannor(1011 );*generate standard normal random value; 
   u=sqrt(mse)*z;  *scale with mse; 
                  e = ar*e + u ;*generate autocorrelated errors; 
 
 /*Generate gompertz function*/  
    
              Y = alpha*(1-exp(-beta-(gamma*x))) ;                                                        
ri=y+e;*value of RI(function+error); 
y_r = round(ri, 0.0001); 
                    output; 
                            end; 
                        end; 
                     end; 
               end; 
         end ; 
   end; 
end; 
run; 



www.manaraa.com

 56 
proc sort data=simulation_inc; 
by group; 
run; 
 
/*For negative funtions plateau 2 and 5*/ 
 
%let _alphavald=%str(1.3732,1.3941,1.3921); *(min,max,median); 
%let _betavald=%str(4.5508,9.1550,7.3702); 
%let _gammavald=%str(.0230,.3714,.1002); 
 
%le1t _arvald=%str(.522);  
%let _msevald=%str(.00000000149); 
 options merror mprint mlogic symbolgen ; 
 
data simulation_dec; 
group=0; 
dir=2; 
do  alpha=&_alphavald; 
 do beta=&_betavald;  
  do gamma=&_gammavald; 
   do ar=&_arvald; 
    do mse=&_msevald; 
    group=group+1; 
      do i=1 to 100; *# profiles generated using each combination;  
             e=0; 
             do x=1 to 200; *number of points on each plateau; 
             z = rannor(1011 );*generate standard normal random value; 
   sqrt(mse)*z;  *scale with mse; 
             e = ar*e + u ;*generate autocorrelated errors; 
  Y = alpha*(1+exp(-beta-(gamma*x))) ; /*Generate gompertz function*/  
  ri=y+e;*value of RI(function+error); 
  y_r = round(ri, 0.0001); 
                                output; 
                            end; 
                        end; 
                     end; 
               end; 
         end ; 
   end; 
end; 
run; 
proc sort data=simulation_dec; 
by group; 
run; 
quit; 
 
                                                                                   
data simulation;                                                                          
set simulation_inc simulation_dec;                                                        
run;    
 
MAKE PERMANENT DATA SET; 
data library.&_prognam;                                                                   
 set simulation;                                                                          
  run; 



www.manaraa.com

 57 
 

D2: SAS Codes for Fitting Non Linear Model And Estimating Asymptote 

 
 
libname library "C:\20060182\programs"; 

%let _alphavali=%str(1.3890,1.3990,1.3906);*(min,median,max for alpha) ;            
%let _betavali=%str(5.9787,9.0448,6.9432);*( min,median,max for Beta) ;             

  %let _gammavali=%str(.0160,.5426,.1199); *(min,median,max for gamma) ;             
 
data work; 
  set library.y15_20060182; 
  run; 
 
options mlogic mprint symbolgen; 
*creating k for alpha,l for beta and m for gamma as indicator variable with 
1=low,2=medium and 3=high; 
 
%macro test; 
 
%let groupc=0; 
%let groupc=25; 
  %do  k=1 %to 3; 
      %do  l=1 %to 3; 
          %do m=1 %to 3; 
       %do n=1 %to 100; 
             %do j=5 %to 100 %by 5;*selecting initial 25 points 
and making increments of 5; 
                           %let _count=25+&j; 
 
* Selection of data; 
    data work1; 
    set work; 
    where group=&groupc and  i=&n and dir=1 and x<=200; 
    if _n_<= &_count then y_r1 = ri; 
    else y_r1=.; 
    niter=&j; 
    run; 
*fitting Gompertz function and predicting asymptote; 
 
    proc nlin data=work1 maxiter=32000 noprint ; 
    parms alpha1= 1   beta1= 1 gamma1=1;  
    model y_r1 =alpha1*(1-exp(beta1-gamma1*x)) ; 
    output out=predict_alpha_&k.&l.&m. p=p_y; 
    run; 
 
*pulling last RI value; 
 

Data fix_ri_&k.&l.&m.; 
Set predict_alpha_&k.&l.&m end=lastobs; 
If lastobs then output; 
Run; 

     
Proc sql noprint; 
Select ri into:&var2 from fix_ri_&k.&l.&m.;*selectinf last RI into var2; 
Quit; 
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%put &var2; 

 
 
 

 
 data tolerance_&k.&l.&m.; 
 set predict_alpha_&k.&l.&m.; 
 diffy_r=(&var2-p_y)**2;   * computing prediction error muhat; 
 if _n_>&_count and _n_<=&_count+5; 
 output; 
 run; 
 

*computing means of prediction errors and predicted RI; 
proc means data=tolerance_&k.&l.&m. noprint ; 
var niter y_r diffy_r; 
output out= Mdiffy_r_&groupc. mean=nitr meany_r diff var=vnit vri vdiff; 
run; 

  
     data mdiff_&groupc.; 
     set Mdiffy_r_&groupc.; 
     diffa=diffy_r; 
 run; 
  
     proc sql noprint; 
     select diffa into : var1 
     from mdiff_&groupc.; 
     quit; 
    %put &var1;  
 
    data Mdiffy_r_&groupc.; 
 set mdiffy_r_&groupc.; 
    k =&k; 
    l=&l; 
    m=&m; 
    n=&n; 
    groupc=&groupc; 
    run; 
 
*recording the last observation for each iteration when condition is met and 
appending all those in one dataset; 
    %if &j=1 %then %do; 
    proc sql; 
    create table new&n. like mdiffy_r_&groupc.; 
    quit; 
 
    proc append base=new&n. data=mdiffy_r_&groupc.; 
    run; 
    %end; 
    %else %do; 
    proc append base=new&n. data=mdiffy_r_&groupc.; run; 
    %end; 
  
*tolerance level tau condition; 
    %if %sysevalf(&var1<.000000009)%then %do; 
    %put Condition met; 
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    %goto next; 
              %end; 
                             %end;  
%next:  
 
**Append data sets;       
proc append base=mdiffy_r_main_&groupc. data=mdiffy_r_&groupc.; 
 run; 
                %end; 
            %end; 
       %end; 
 %end; 
 
*create permanent library; 
data library.inc_&groupc; 
set mdiffy_r_main_&groupc.; 
run; 
%mend ; 
 
 %test; 
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